

Idaho National Engineering and Environmental Laboratory

Modeling Space Reactors with ATHENA

Presented by

Gary Johnsen
ATHENA/RELAP5-3D Program Manager

July 22, 2003

ATHENA

Advanced Thermal-Hydraulic Energy Network Analyzer

- Developed as an extension to the RELAP5 code (LWR nuclear reactor accident analysis)
- Models transient fluid flow in user-defined thermalhydraulic networks
- Fifteen working fluids available
- Applications have included:
 - Tokamak fusion reactor
 - Cryogenic storage and delivery systems
 - SP-100 nuclear system

ATHENA Modeling Features

- Single or two-phase flow
- 1-, 2-, or 3- dimensional flow networks
- Reactor kinetics 1-, 2-, or 3-dimensional nodal kinetics model
- Heat Transfer conduction, convection, radiation
- Components pumps, valves, phase-separators, accumulators, jet-mixers, pressurizers, heat pipes, and turbines
- Process models critical flow, abrupt area change, form loss, phase separation at tees
- User-defined gravitational constant
- Control systems
- Graphical user interface

ATHENA Working Fluids

- Light water
- Heavy water
- Hydrogen
- Carbon Dioxide
- Helium
- Nitrogen
- Lithium
- Potassium

- Sodium
- Glycerin
- Lead-Bismuth
- NaK
- Lithium-Lead
- Ammonia
- Blood

Different fluids can exist in separate loops

The graphical user interface facilitates analysis of calculated results

- Graphical display generated from input data
- Color scale displays user-selected parameter
- Point & click plots
- Replay capability at any speed

ATHENA was used to analyze SP-100*

*Roth, P.A., Capabilities of the ATHENA Computer Code for Simulating Thermal-Hydraulic Responses Of Space Reactors, EGG-RTH-7404, September 1986.

ATHENA model of SP-100

SP-100 Steady-State Conditions

Parameter	Value
Core Power (MW _t)	7.1
Mass Flow Rate per Loop (kg/s)	34.05
Loop Differential Pressure (kPa)	49.5
Loop Operating Pressure (kPa)	149.5
Hot Leg Temperature (K)	1360.9
Cold Leg Temperature (K)	1310.8
Heat Pipe Temperature (K)	837.3
Pump Radiator Power Dissipation (MW _t)	0.1191
Heat Pipe Radiator Power Dissipation (MW _t)	6.9876
Electric Power Output (kW _e)	300.0

SP-100 "Demonstration Calculation"

- Transient initiated from full power condition
- 10 kiloton nuclear explosion occurs 10 km from the space vehicle
- Bomb x-rays dissipate their energy into the radiator structures
- Reactor power doubles from neutron flux through the core

Reactor Power Response

Heat Pipe Temperature Response

TEG Temperature Response

Electric Power Response

Summary

- ATHENA contains the basic capabilities necessary to model space reactor systems
- New working fluids can readily be added
- Depending on specific design details, new or improved models may be needed:
 - Electromagnetic pump
 - Improved heat pipe model
 - Freeze/Thaw of liquid metal